Are DES safer than BMS? Evidence from a Network Meta-Analysis

Kyung Woo Park Seoul National University Hospital, Seoul, Korea

Disclosures

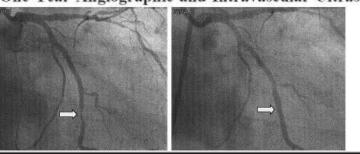
I, Kyung Woo Park, DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

HOSPITAL

Remember the days of restenosis?

American Heart Association

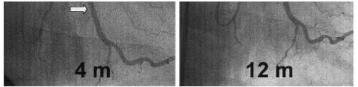
Learn and Live.


JOURNAL OF THE AMERICAN HEART ASSOCIATION

Clinical Investigation and Reports

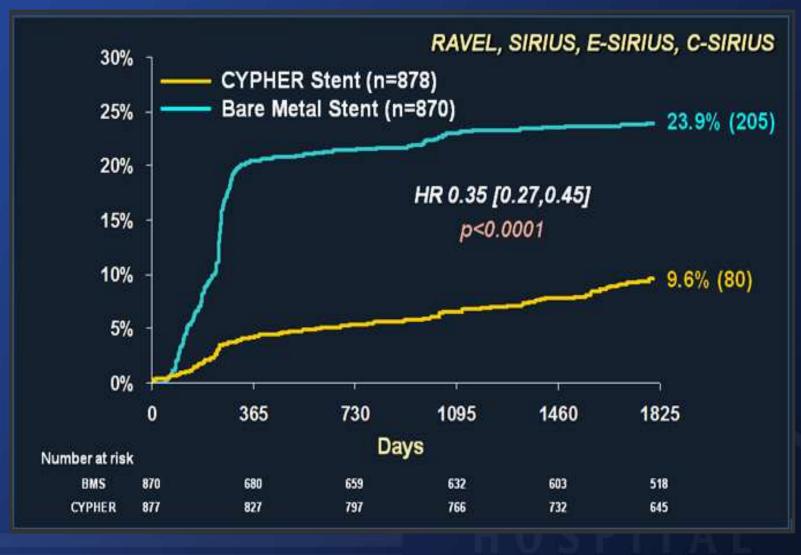
Sustained Suppression of Neointimal Proliferation by Sirolimus-Eluting Stents

One-Year Angiographic and Intravascular Ultrasound Follow-Up

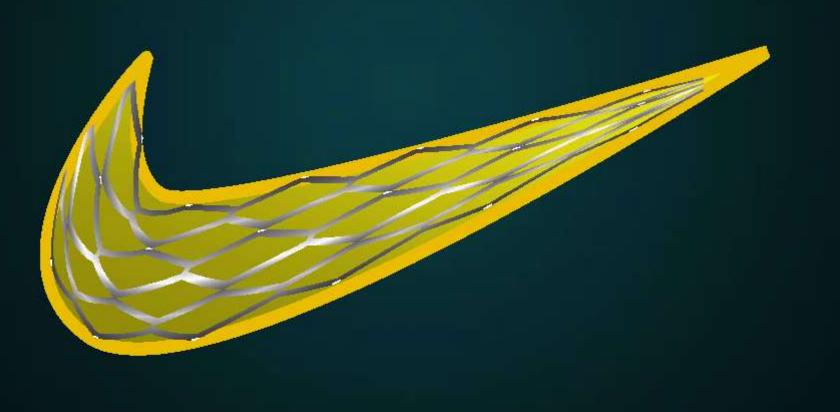

2001

Patrick Serruys – "If I am in a dream, please don't wake me"

Editorial


Living the Dream of No Restenosis

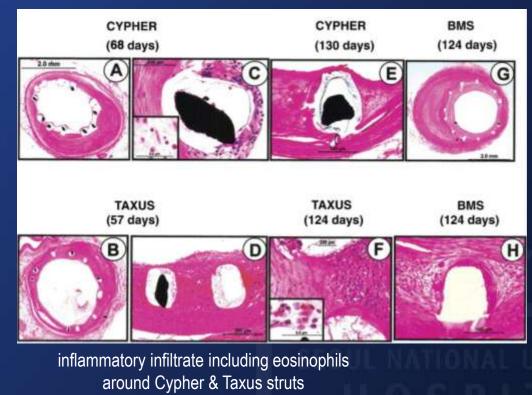
Paul S. Teirstein, MD


CYPHER vs. BMS : Pooled Analysis

TLR rate from 4 RCTs

Intervention 2003

Just DES It!

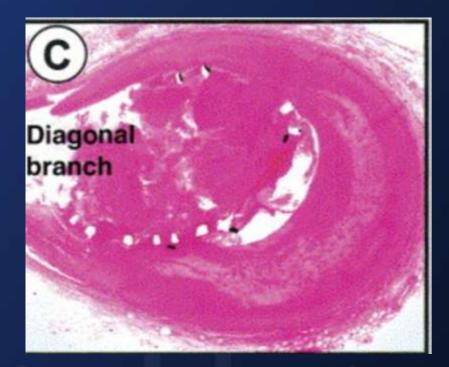

The "Camenzind" Shock – ESC 2006

Do DES kill patients? Unsafe in the long term compared with BMS

DES and Late Stent Thrombosis

- DES reduce the need for repeat revascularization compared with bare metal stents (BMS)
- However, concerns have been raised regarding the potential for late stent thrombosis with DES related to delayed healing of vessel wall.

Joner et at. JACC. 2006


Restenosis

Requiring repeat revascularization Relatively soft adverse event

Stent Thrombosis

Results in death/MI Relatively hard adverse event

VS.

DES?

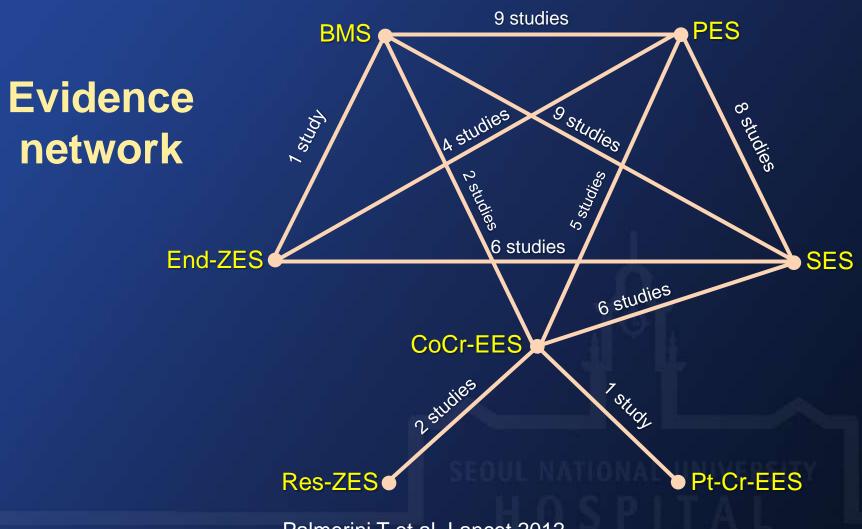
SNU-Hospital (Seoul National University)

THE LANCET

Stent thrombosis with drug-eluting and bare-metal stents: $\Im \mathscr{W}^{\dagger}$ evidence from a comprehensive network meta-analysis

Tullio Palmerini, Giuseppe Biondi-Zoccai, Diego Della Riva, Christoph Stettler, Diego Sangiorgi, Fabrizio D'Ascenzo, Takeshi Kimura, Carlo Briguori, Manel Sabatè, Hyo-Soo Kim, Antoinette De Waha, Elvin Kedhi, Pieter C Smits, Christoph Kaiser, Gennaro Sardella, Antonino Marullo, Ajay J Kirtane, Martin B Leon, Gregg W Stone

Lancet 2012; 379: 1393-402


Articles

Tullio Palmerini et at. Lancet 2012

HOSPITAL

Stent Thrombosis Network Meta-analysis Primary EP: ARC Definite ST (FU through 2 years)

49 RCTs, 50,844 pts

Palmerini T et al. Lancet 2012

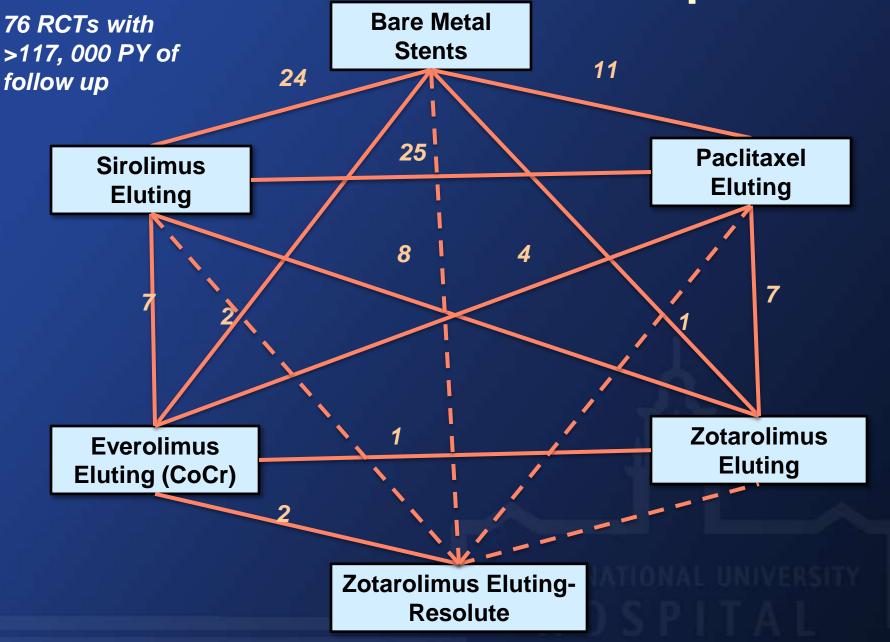
Stent Thrombosis Network Meta-analysis Primary EP: ARC Definite ST (FU through 2 years) 49 RCTs, 50,844 pts

1-year definite stent thrombosis*				Odds Ratio [95%]
CoCr-EES vs BMS		┣━━━┥	 	0.23 (0.13-0.41)
CoCr-EES vs PES		⊢−	i i	0.28 (0.16-0.48)
CoCr-EES vs SES			 	0.41 (0.24-0.70)
CoCr-EES vs Res-	ZES			0.14 (0.03-0.47)
CoCr-EES vs End-	ZES		1 1 1	0.21 (0.10-0.44)
SES vs BMS		⊢●⊣	1	0.57 (0.36-0.88)
End-ZES vs SES			⊢−●−− 1	1.92 (1.07-3.90)
	0.01	0.1	1	10
		Favors Stent 1	Favors	Stent 2

Palmerini T et al. Lancet 2012

Interventional Cardiology

Short- and Long-Term Outcomes With Drug-Eluting and Bare-Metal Coronary Stents


A Mixed-Treatment Comparison Analysis of 117 762 Patient-Years of Follow-Up From Randomized Trials

Sripal Bangalore, MD, MHA; Sunil Kumar, MD; Mario Fusaro, MD; Nicholas Amoroso, MD; Michael J. Attubato, MD; Frederick Feit, MD; Deepak L. Bhatt, MD, MPH; James Slater, MD

Bangalore et at. Circulation 2012

HOSPITAL

Network of Treatment Comparisons

Any Stent Thrombosis

Control	Treatment	Treatment Control	Rate Ratio	95%	Crl
BMS (Ref)					
	Sirolimus		0.87	0.71	1.07
	Paclitaxel	· · · · · · · · · · · · · · · · · · ·	1.19	0.92	1.51
	Everolimus	↓ `	0.51	0.35	0.73
	Zotarolimus	· · · · · · · · · · · · · · · · · · ·	0.90	0.59	1.34
	Zotarolimus-R		0.75	0.38	1.49
Sirolimus (Ref)		Ť			
	Paclitaxel	_ _	1.36	1.07	1.72
	Everolimus	İ	0.59	0.41	0.83
	Zotarolimus	· · · · · · · · · · · · · · · · · · ·	1.04	0.67	1.54
	Zotarolimus-R		0.87	0.44	1.71
Paclitaxel (Ref)		Ť			
	Everolimus	_ _	0.44	0.31	0.60
	Zotarolimus	· · _ ↓	0.78	0.50	1.10
	Zotarolimus-R	•	0.64	0.33	1.24
Everolimus (Ref)		· · ·			
· · /	Zotarolimus		1.73	1.08	2.87
	Zotarolimus-R		1.45	0.82	2.66
Zotarolimus (Ref)					
	Zotarolimus-R	_	0.82	0.39	1.83
		I I I SEOUL		UNIVER	SITY
	0.10	1.00	10.00		
		RR (95% Crl)			

Bangalore et al. Circulation. 2012;125:2873-2891

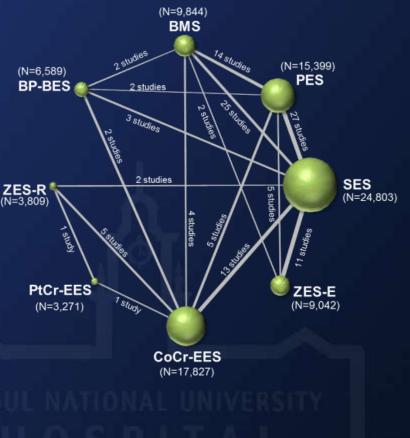
Background

- <u>Biodegradable-polymer (BP) DES</u> has been developed with an aim to reduce the risk of late stent thrombosis.
- While BP-DES have yet to receive approval in the United States, they are widely used across the world including Asia and Europe.
- Recent meta-analyses (Palmerini et al. Lancet 2012; Bangalore et al. Circ 2012) have shown improved safety as well as efficacy of newer-generation DES.
- However, they have limitations in that the number of patients with newer-generation DES was relatively small and that <u>BP-DES were not included in the analyses</u>.

SNU-Hospital (Seoul National University)

Background

- Recent meta-analyses (Palmerini et al. Lancet 2012; Bangalore et al. Circ 2012) have shown improved safety as well as efficacy of newer-generation DES.
- Biodegradable-polymer (BP) DES has been developed with an aim to reduce the risk of late stent thrombosis.
- However, they have limitations in that the number of patients with newer-generation DES was relatively small and that BP-DES were not included in the analyses.
- While BP-DES have yet to receive approval in the United States, they are widely used across the world including Asia and Europe.


Aim of Study

- We sought to compare the clinical outcome of various types of coronary stents including all second-generation DES (including BP-DES) with all available data up to now).
- A systematic literature review of randomized controlled trials comparing coronary stents was performed, and the data from the review was the basis of a multipletreatments network meta-analysis using a Bayesian framework.

HOSPITAL

Aim of Study

- In this study, we sought to compare the clinical outcome of various types of coronary stents including BMS, durable-polymer DES (DP-DES), and biodegradable-polymer DES (BP-DES).
- A systematic literature review of \bullet randomized controlled trials comparing coronary stents was performed, and the data from the review was the basis of a multipletreatments network metaanalysis using a **Bayesian** framework.

Seoul National University Hospital

Cardiovascular Center

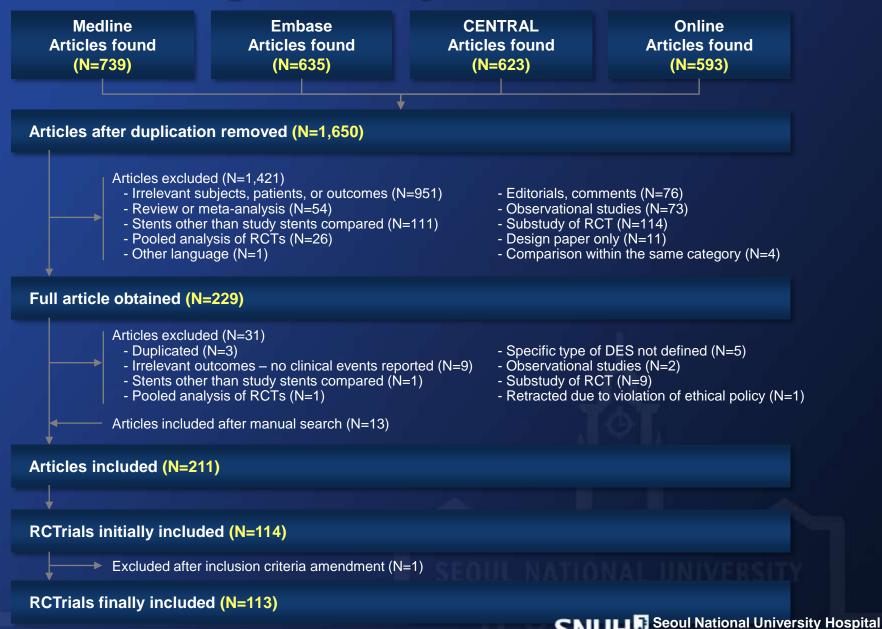
Eligible Study Criteria

Inclusion criteria

- RCT comparing 2 or more coronary stents in patients undergoing PCI
- Study stents
 - (1) BMS
 - (2) Paclitaxel-eluting stents (PES, Boston Scientific)
 - (3) Sirolimus-eluting stent (SES, Cordis)
 - (4) Endeavor zotarolimus-eluting stents (ZES-E, Medtronic)
 - (5) Cobalt-chromium everolimus-eluting stents (CoCr-EES, Abbott Vascular and Boston Scientific)
 - (6) Platinum-chromium everolimus-eluting stents (PtCr-EES, Boston Scientific)
 - (7) Resolute zotarolimus-eluting stents (ZES-R, Medtronic)
 - (8) BP biolimus A9-eluting stents (BP-BES, Biosensors and Terumo)

Exclusion criteria

- 1) Studies comparing two stents with different stent design within the same category described above,
- 2) Studies in which specific type of DES was not predefined and the choice among available DES was left to the investigators' discretion (for example, BMS versus any DES)
- 3) Stuides published in a language other than English.
- * No restrictions were imposed on study period, sample size, or publication status as well as patient or lesion criteria.

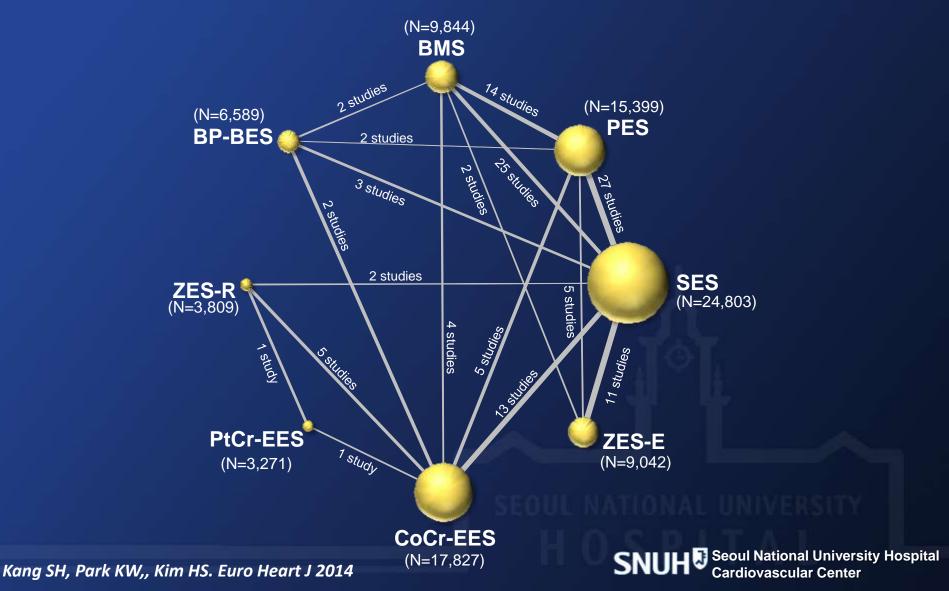

Data Sources

- Electronic search (from the inception to March 2013)
 - PubMed
 - Embase
 - Cochrane Central Register of Controlled Trials (CENTRAL)
 - Relevant websites (www.crtonline.org, www.clinicaltrialresults.com, www.tctmd.com, www.cardiosource.com, and www.pcronline.com)

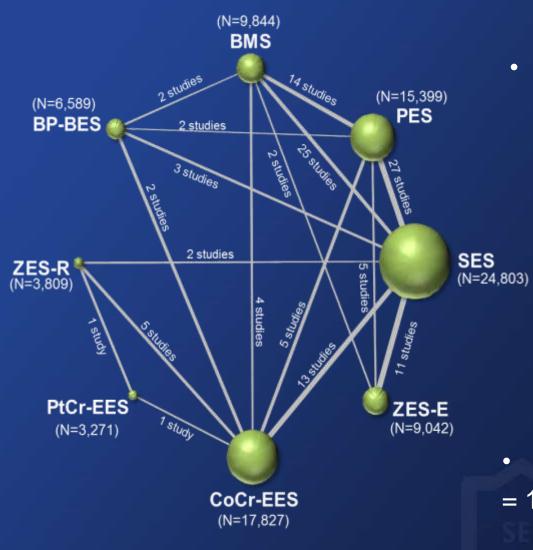
Study Outcomes

- Principal safety endpoint: **definite or probable ST** (ARC ≤ 1 year)
- Other safety endpoints
 - definite ST
 - all-cause death
 - cardiac death
 - myocardial infarction
- Efficacy endpoints
 - TLR
 - TVR

Flow Diagram of Systematic Review



Cardiovascular Center


Kang SH, Park KW,, Kim HS. Euro Heart J 2014

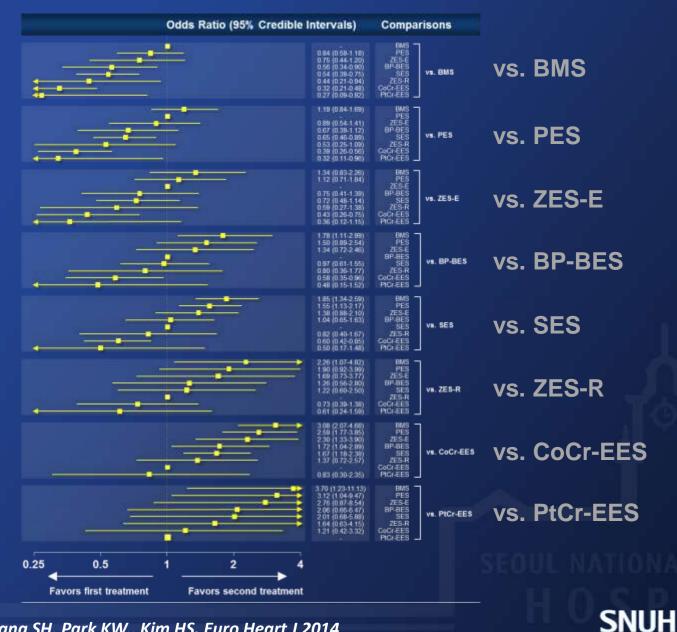
Network Plot of Included Trials

- Polygonal network configuration with mixed connections
- Almost fully closed loops with limited comparisons of PtCr-EES and ZES-R

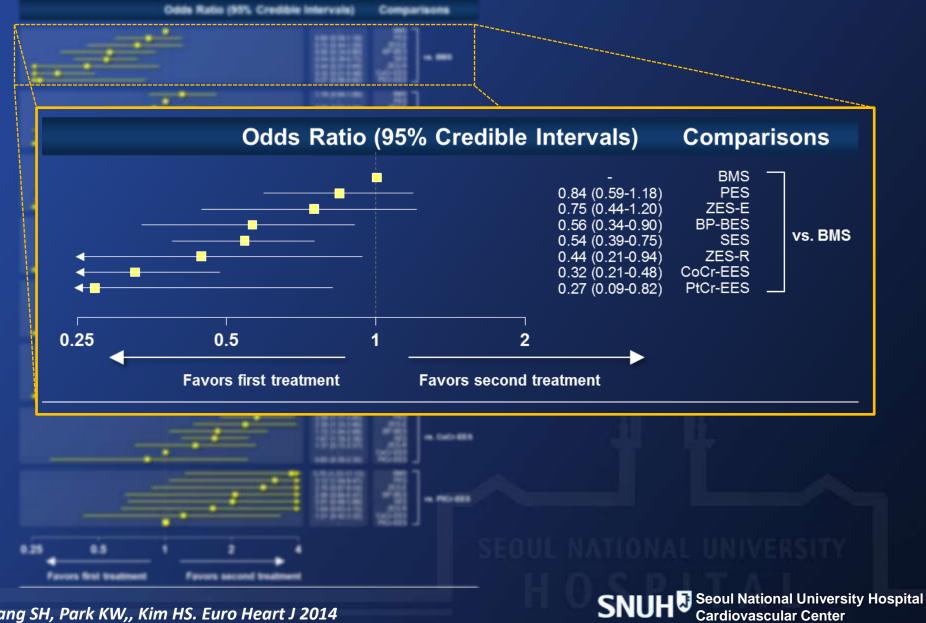
Study Characteristics

- A total of 113 trials with 90,584 patients
 - 6 studies: 3-arm design
 - 1 study: 2-phase enrollment
 - 10 studies: DM
 - 21 studies: STEMI
 - 5 studies: CTO
 - 3 studies: uLMCA disease
 - 3 studies: in-stent restenosis
 - 2 studies: bypass graft
- Estimated median F/U duration
 = 19.1 months (3 months 5 years)

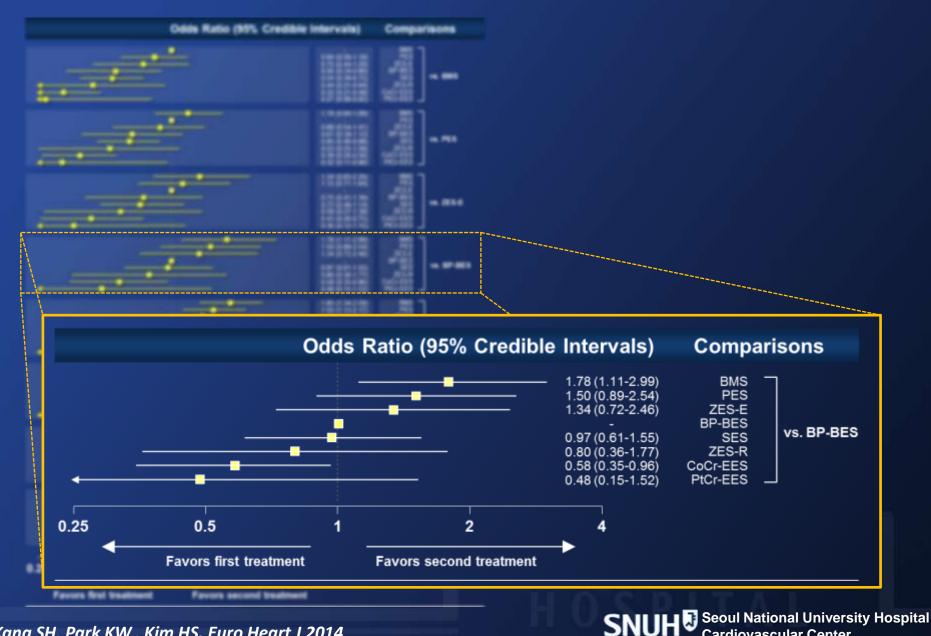
Kang SH, Park KW,, Kim HS. Euro Heart J 2014


Main Characteristics of Included Trials

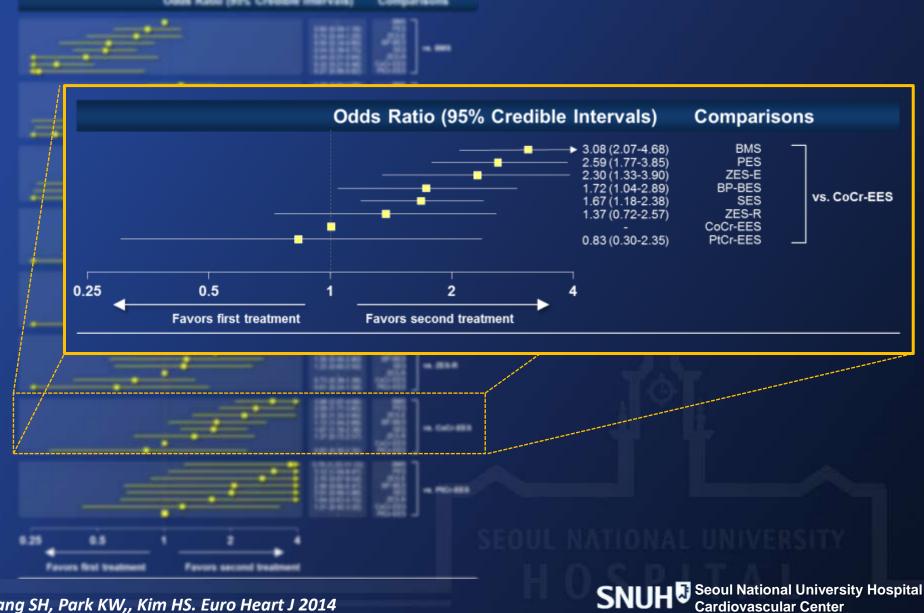
Trials	Stent Comparison (Patient Number)	Primary Endpoint	Design	Major Inclusion Criteria	Main Results	Follow-Up
Published in 2002						
RAVEL	SES vs. BMS (120:118)	In-stent LL at 6 months	Multicenter, superiority	Stable or unstable angina	SES superior to BMS	5 years
Published in 2003						
ASPECT	PES vs. BMS (117:58)	% stenosis at 4-6 months	Three-center, superiority	Stable or unstable angina	PES superior to BMS	6 months
E-SIRIUS	SES vs. BMS (175:177)	MLD at 8 months	Multicenter, superiority	Stable or unstable angina	SES superior to BMS	9 months
SIRIUS	SES vs. BMS (533:525)	TVF at 9 months	Multicenter, superiority	Stable or unstable angina	SES superior to BMS	5 years
TAXUS I	PES vs. BMS (31:30)	MACE (death Q-wave MI, TVR, ST) at 30 days	Three-center, feasibility	Stable or unstable angina	Promising results of PES	2 years
TAXUS II	BMS vs. PES (270:266)	%NIH by IVUS at 6 months	Multicenter, superiority	Stable or unstable angina	PES superior to BMS	5 years
Published in 2004						
C-SIRIUS	SES vs. BMS (50:50)	MLD at 8 months	Multicenter, superiority	Stable or unstable angina	SES superior to BMS	9 months
SES-SMART	SES vs. BMS (129:128)	In-segment binary restenosis at 8 months	Multicenter, superiority	Stable angina, ACS	SES superior to BMS	2 years
TAXUS IV	BMS vs. PES (652:662)	TVR at 9 months	Multicenter, superiority	Stable or unstable angina	PES superior to BMS	5 years
Published in 2005						
BASKET	SES vs. PES (264:281)	Cost-effectiveness after 6 months	Single-center, superiority	All-comer design	DES (SES and PES) not superior to BMS	18 months
ISAR DEST						
Co	ntinued					


Kang SH, Park KW,, Kim HS. Euro Heart J 2014

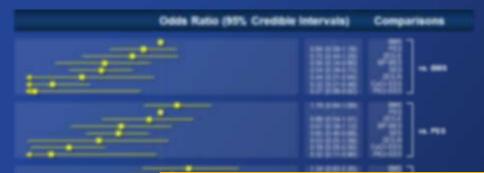
SNUH Seoul National University Hospital Cardiovascular Center

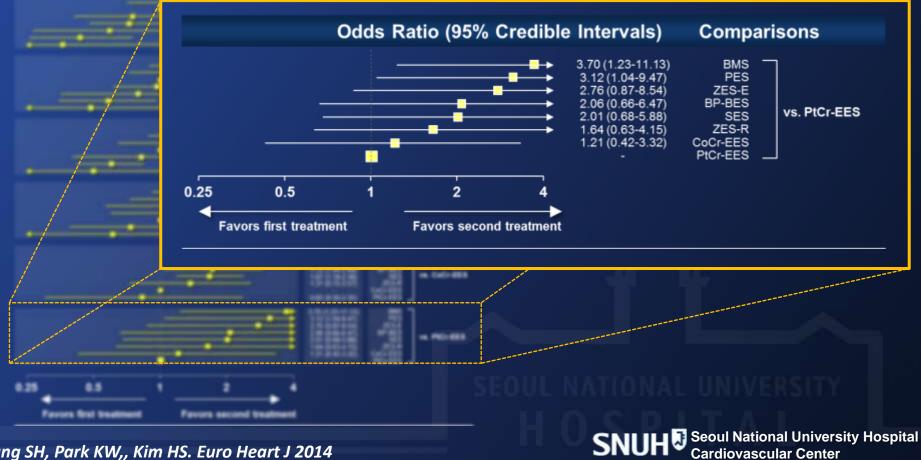

Seoul National University Hospital Cardiovascular Center

Kang SH, Park KW,, Kim HS. Euro Heart J 2014



Kang SH, Park KW,, Kim HS. Euro Heart J 2014




Cardiovascular Center

Kang SH, Park KW,, Kim HS. Euro Heart J 2014

Kang SH, Park KW,, Kim HS. Euro Heart J 2014

Kang SH, Park KW,, Kim HS. Euro Heart J 2014

Rankogram

Definite or Probable ST within 1 Year

Seoul National University Hospital Cardiovascular Center

SNL

% probability to rank at each place

Definite or Probable ST of DES with Reference to BMS

(A) Early ST (\leq 30 days) (D) Very Late ST (>365 days) BMS vs. BMS reference BMS vs. BMS reference 0.78 (0.46-1.34) PES vs. BMS PES vs. BMS 1.54 (0.89-2.66) 0.61 (0.30-1.22) ZES-E vs. BMS ZES-E vs. BMS 0.54 (0.21-1.35) **BP-BES vs. BMS** 0.34 (0.13-0.82) 0.44 (0.11-1.52) **BP-BES vs. BMS** SES vs. BMS 0.53 (0.32-0.88) 1.82 (1.05-3.13) SES vs. BMS 0.27 (0.08-0.81) ZES-R vs. BMS 0.49 (0.09-2.57) ZES-R vs. BMS 0.29 (0.14-0.55) CoCr-EES vs. BMS CoCr-EES vs. BMS 0.49 (0.20-1.17) 0.14 (0.03-0.59) PtCr-EES vs. BMS 1.15 (0.07-45.92) PtCr-EES vs. BMS (B) Late ST (31-365 days) (E) Late and Very Late ST (>30 days) BMS vs. BMS reference reference BMS vs. BMS PES vs. BMS 1.10 (0.54-2.34) PES vs. BMS 1.31 (0.81-2.04) 0.82 (0.41-1.76) ZES-E vs. BMS 1.51 (0.47-5.26) ZES-E vs. BMS 0.38 (0.08-1.71) **BP-BES vs. BMS BP-BES vs. BMS** 0.42 (0.15-1.10) SES vs. BMS 0.35 (0.15-0.76) SES vs. BMS 1.16 (0.73-1.78) ZES-R vs. BMS 1.59 (0.24-10.30) ZES-R vs. BMS 0.94 (0.30-3.22) CoCr-EES vs. BMS 0.31 (0.11-0.80) 0.42 (0.22-0.78) CoCr-EES vs. BMS PtCr-EES vs. BMS 2.20 (0.12-86.66) PtCr-EES vs. BMS 1.21 (0.19-10.72) (F) ST at the Longest Follow-Up (C) ST within 1 Year (-365 days) BMS vs. BMS reference BMS vs. BMS reference 1.08 (0.84-1.38) PES vs. BMS 0.85 (0.60-1.19) PES vs. BMS ZES-E vs. BMS 0.70 (0.48-1.01) 0.75 (0.45-1.19) ZES-E vs. BMS **BP-BES vs. BMS** 0.55 (0.32-0.89) 0.59 (0.39-0.89) **BP-BES vs. BMS** SES vs. BMS 0.82 (0.64-1.05) 0.53 (0.39-0.73) SES vs. BMS

ZES-R vs. BMS

0.125 0.25

Favors first treatment

0.5

2

4

Favors second treatment

CoCr-EES vs. BMS

PtCr-EES vs. BMS

0.62 (0.32-1.22)

0.42 (0.29-0.60)

0.40 (0.16-1.15)

Favors second treatment

2

ZES-R vs. BMS

0.125 0.25 0.5

Favors first treatment

CoCr-EES vs. BMS PtCr-EES vs. BMS 0.52 (0.24-1.18)

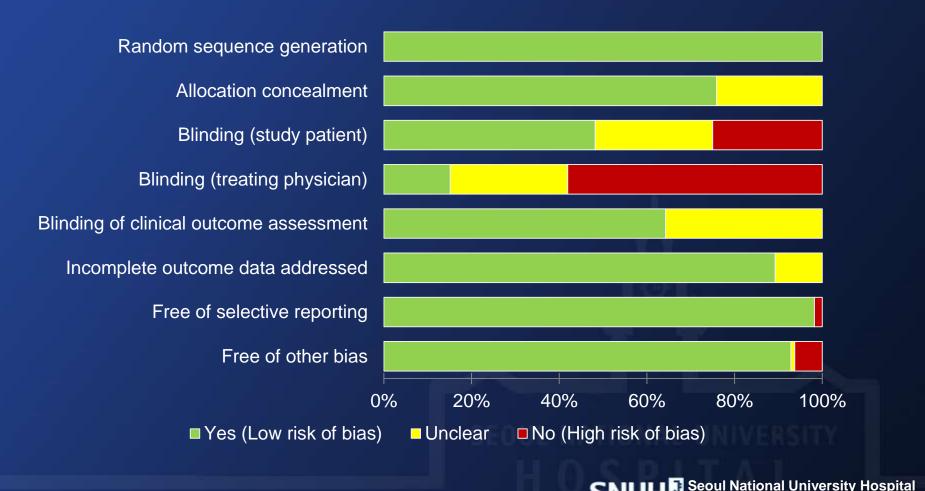
0.35 (0.23-0.52)

0.31 (0.10-0.89)

Random sequence generation Allocation concealment Blinding (study patient) Blinding (treating physician) Blinding of clinical outcome assessment Incomplete outcome data addressed Free of selective reporting Free of other bias

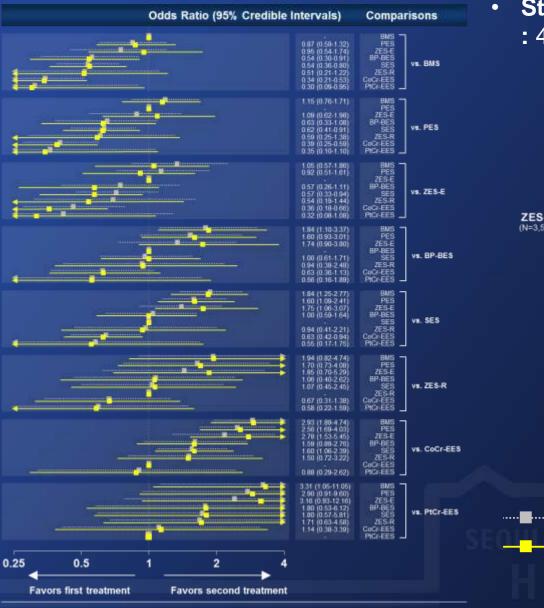
Risk of Bias in all 113 RCTs (8 aspects)

- All trials were randomized controlled trials
- Allocation concealment: adequate in 86/113 trials
- A double-blind design
 - some studies in early period (2003-2006)
 - no studies since 2007
- Blinding of clinical event adjudication: adequate in 2/3
- Yes (Low risk of bias)
- Unclear
- No (High risk of bias)

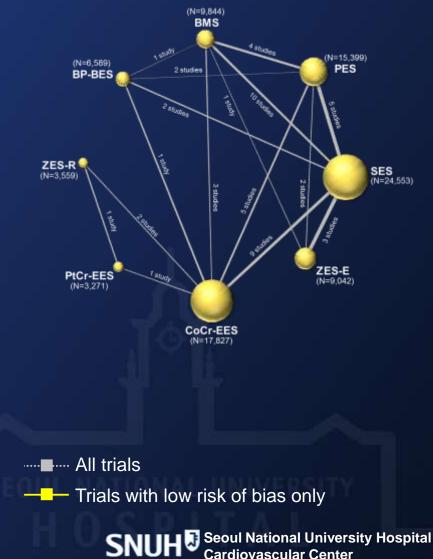

EUUL NATIONAL UNIVERSITY

Seoul National University Hospital Cardiovascular Center

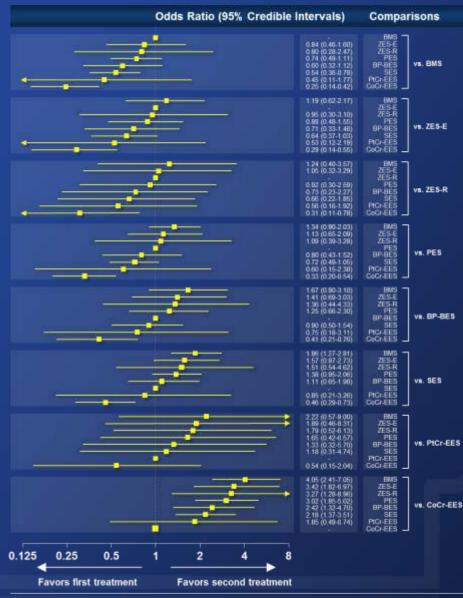
Risk of Bias from 8 Aspects


- Among a total of 113 trials included
- Proportion of studies with each of the judgments for each entry (according to the Cochrane Collaboration's tool)

Cardiovascular Center


Kang SH, Park KW,, Kim HS. Euro Heart J 2014

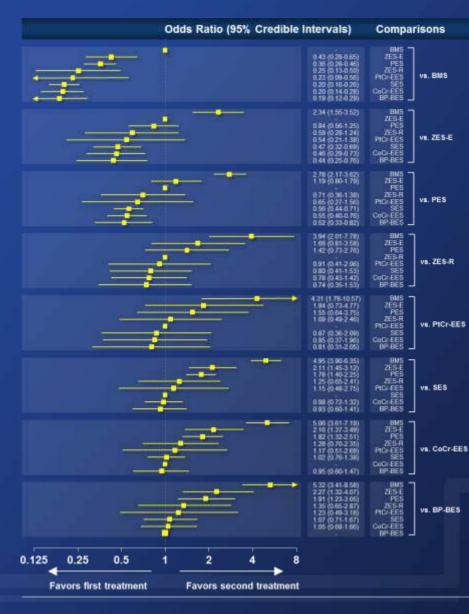
Sensitivity Analysis Definite or Probable ST within 1 Year


Kang SH, Park KW,, Kim HS. Euro Heart J 2014

Studies with Low Risk of Bias : 48 Trials; 60,911 Patients

Definite ST Within 1 Year Kang SH, Park KW,, Kim HS. Euro Heart J 2014

$CoCr-EES > (PtCr-EES \ge SES \ge BP-BES \ge PES \ge ZES-R \ge ZES-E \ge BMS)$

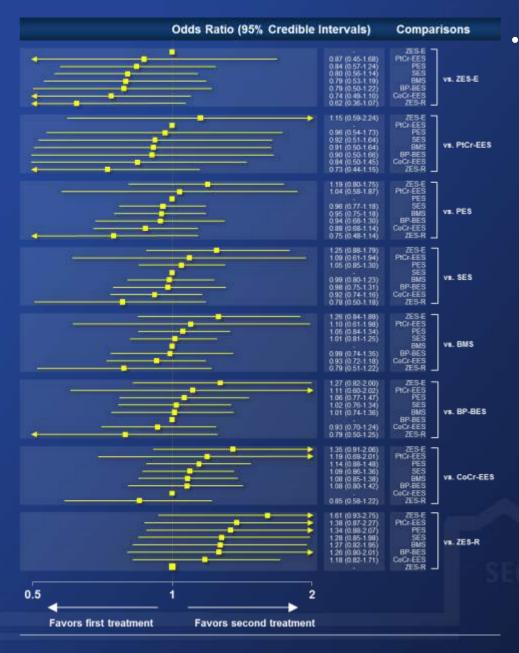

- CoCr-EES superior to BMS, ZES-E, ZES-R, PES, BP-BES, and SES
- SES superior to BMS
- SES tended to be superior to ZES-E and PES

Seoul National University Hospital

Cardiovascular Center

TLR Within 1 Year

$(BP-BES \ge CoCr-EES \ge SES \ge PtCr-EES \ge ZES-R) > (PES \ge ZES-E) > BMS$



- All DES superior to BMS •
- **BP-BES**, CoCr-EES and SES • superior to ZES-E and PES

SNUH Seoul National University Hospital

Cardiovascular Center

All-Cause Death in 1 Year Kang SH, Park KW,, Kim HS. Euro Heart J 2014

No significant difference between any comparisons

SNUH Seoul National University Hospital Cardiovascular Center

Conclusions

- All DESs but PES and ZES-E were superior to BMS in terms of ST within 1 year.
- CoCr EES (in large sample size) was superior to any DES even including BP-BES in terms of ST.
- PtCr EES (in small sample size) showed a promising tendency to be superior to any DES in terms of ST.
- Our results suggest that not only the biodegradability of polymer, but the optimal combination of stent alloy, design, strut thickness, polymer, and drug all combined determine the safety of DES.

Are DES safer than BMS? YES!

Just DES It! 2nd generation

Thank you for your attention!

HOSPITAL